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Abstract

Classical plate theory (CLPT) and first-order shear deformation theory (FSDT) of plates are reformulated using the

nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived.

Navier’s approach has been used to solve the governing equations for simply supported boundary conditions. Analytical

solutions for vibration of the nanoplates such as graphene sheets are presented. Nonlocal theories are employed to bring

out the effect of the nonlocal parameter on natural frequencies of the nanoplates. The developed theory has been extended

to the analysis of double layered nanoplates. Effect of (i) nonlocal parameter, (ii) length, (iii) height, (iv) elastic modulus

and (v) stiffness of Winkler foundation of the plate on nondimensional vibration frequencies are investigated. The

theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories of

nanoplates and nanoshells.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nanostructured elements have attracted attention of scientific community due to their superior properties.
Conducting experiments with nanoscale size specimens is found to be difficult and expensive. Therefore,
development of appropriate mathematical models for nanostructures is an important issue concerning
application of nanostructures. Generally, three approaches have been developed to model nanostructures.
These approaches are (a) atomistic [1,2], (b) hybrid atomistic–continuum mechanics [3–6] and (c) continuum
mechanics. Both atomistic and hybrid atomistic–continuum mechanics are computationally expensive and are
not suitable for analyzing large scale systems. Continuum mechanics approach is less computationally
expensive than the former two approaches. It has been found that continuum mechanics results are in good
agreement with atomistic and hybrid approaches.

Vibration of nanostructures is of great importance in nanotechnology. Understanding vibration behavior of
nanostructures is the key step for many NEMS devices like oscillators, clocks and sensor devices. There are
already exploratory studies on the continuum models for vibration of carbon nanotubes (CNTs) or similar
micro or nanobeam like elements [7–12]. A review related to the importance and modeling of vibration
behavior of various nanostructures can be found in Gibson’s et al. [13]. In these works it has been suggested
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b length and breadth of the plate
C Winkler foundation constant (represent-

ing van der Walls forces)
D bending rigidity of the plate
E Young’s modulus of the plate material
Eb Young’s modulus of the beam material
G shear modulus of the plate material
h thickness of the plate
hb thickness of the beam
L length (or breadth) of a square plate
Lb length the beam
Mxx

1 ; M
yy
1 ; M

xy
1 moment resultants

Nxx
0 ; N

yy
0 ; N

xy
0 in-plane force resultants

q transverse distributed load
q1ðxÞ; q2ðxÞ equivalent transverse distributed

load in the presence of van der Walls
forces on the upper and lower plate,
respectively

S(x) fourth-order elasticity tensor
u, v displacement of the point (x, y, 0) of

plate along x and y-axis, respectively
Vxx

0 ;V
yy
0 transverse force resultants

wc; wf deflections of the single layered plate at
point (x, y) calculated using CLPT and
FSDT, respectively

wc
1; w

f
1 deflections of the upper plate in double

layered plate system calculated using
CLPT and FSDT, respectively

wc
2; w

f
2 deflections of the lower plate in double

layered plate system calculated using
CLPT and FSDT, respectively

�xx; �yy; �zz; �xy; �yz; �xz strain tensors

k2 shear correction factor
m nonlocal parameter
n Poisson’s ratio of the plate material
r density of the plate material
rb density of the beam material
sl macroscopic local stress tensor
snl

xx; s
nl
yy; s

nl
zz; s

nl
xy; s

nl
yz; s

nl
xz nonlocal stress ten-

sors
cx; cy rotations of a transverse normal in the

single layered plate with respect to x and
y-axis, respectively

c1x; c1y rotations of a transverse normal in the
upper plate of the double layered plate
system with respect to x and y-axis,
respectively

c2x; c2y rotations of a transverse normal in the
lower plate of the double layered plate
system with respect to x and y-axis,
respectively

ob natural frequency of the beam
ōb nondimensional natural frequency of the

beam
oc

mn; o
f
mn natural vibration frequencies of single
layered plate calculated using CLPT and
FSDT, respectively

oc
mn1; o

c
mn2 natural vibration frequencies of
double layered plate calculated using
CLPT

of
mn1; o

f
mn2 natural vibration frequencies of
double layered plate calculated using
FSDT

r2 Laplacian operator in 2D cartesian co-
ordinate system
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that nonlocal elasticity theory developed by Eringen [14,15] should be used in the continuum models for
accurate prediction of vibration behaviors. This is due to the scale effect of the nanostructures. Importance of
accurate prediction of nanostructures’ vibration characteristics have been discussed by Gibson et al. [13].
A relevant reference concerning nonlocal theories for bending, buckling and vibration analysis of beams is
reported by Reddy [16].

Similar to CNTs, nanoplates possess superior mechanical properties [17,18]. But in contrast to one-
dimensional structures, limited work have been found on vibration analysis of two-dimensional nanoplates
[18–21]. In the continuum models used in Refs. [18–21] only classical plate theory (CLPT) has been considered
for modeling the nanoplates. These mathematical models do not take scale effect into account. It is
importance to incorporate nonlocal elasticity theories in the vibration analysis of nanoplates. In the present
paper attempt is made to study the vibration of the nanoplates using nonlocal elasticity theory. Both the
CLPT and first-order shear deformation theory (FSDT) have been incorporated in the analysis. The
developed theory has been extended to the analysis of multilayered nanoplates. Navier’s approach has been
used to solve the governing equations for simply supported boundary conditions. Effect of (i) nonlocal
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parameter, (ii) length, (iii) height, (iv) elastic modulus and (v) stiffness of Winkler foundation of the plates on
nondimensional vibration frequencies are investigated.

2. Formulation

The coordinate system used for the nanoplate is shown in Fig. 1a. Origin is chosen at one corner of the mid-
plane of the plate. The x, y coordinates of the axes are taken along the length and width of the plate.
z coordinate is taken along the thickness of the plate. Following stress resultants are used in the present
formulation

Nxx
0 ¼

Z h=2

�h=2
snl

xx dz; N
yy
0 ¼

Z h=2

�h=2
snl

yy dz; N
xy
0 ¼

Z h=2

�h=2
snl

xy dz

Vxx
0 ¼

Z h=2

�h=2
snl

xz dz; V
yy
0 ¼

Z h=2

�h=2
snl

yz dz; Mxx
1 ¼

Z h=2

�h=2
zsnl

xx dz

M
yy
1 ¼

Z h=2

�h=2
zsnl

yy dz; M
xy
1 ¼

Z h=2

�h=2
zsnl

xy dz (1)

Here h denotes the height of the plate. snl
xx; s

nl
yy; s

nl
zz; s

nl
xy; s

nl
yz and snl

xz represent the nonlocal stress tensors. In
classical local elasticity theories, stress at a point depends only on the strain at that point. While in nonlocal
elasticity theories it is assumed that the stress at a point depends on the strains at all the points of the
continuum. In other words, according to this nonlocal theory strain at a point depends on both stress and
spatial derivatives of the stress at that point. According to Eringen [14] the nonlocal constitutive behavior of a
Hookean solid is represented by the following differential constitutive relation

ð1� mr2Þsnl ¼ sl (2)
Fig. 1. Schematic of: (a) single layered and (b) double layered nanoplates.
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Here m is the nonlocal parameter and sl the local stress tensor at a point which is related to strain by
generalized Hooke’s law

slðxÞ ¼ SðxÞ : �ðxÞ (3)

where S is the fourth-order elasticity tensor and ‘:’ denotes the double dot product.

2.1. Classical plate theory (CLPT)

2.1.1. Single layered plate

A typical single layer plate is shown in Fig. 1a. CLPT for the single layered plate is based on the following
displacement field

ux ¼ uðx; y; tÞ � z
qwc

qx
; uy ¼ vðx; y; tÞ � z

qwc

qy
and uz ¼ wcðx; y; tÞ (4)

Here u, v and wc denote displacement of the point (x, y, 0) along x, y and z directions, respectively.
The strains are expressed as

�xx ¼
qu

qx
� z

q2wc

qx2
; �yy ¼

qv

qx
� z

q2wc

qy2
; �zz ¼ 0; �xy ¼

1

2

qu

qy
þ

qv

qx
� 2z

q2wc

qxy

� �
,

�xx ¼ 0; �yz ¼ 0 (5)

It can be seen from Eq. (2) that nonlocal behavior enters into the problem through the constitutive relations.
Principal of virtual work is independent of constitutive relations. So this can be applied to derive the
equilibrium equations of the nonlocal plates. Using the principle of virtual displacements, following governing
equations can be obtained [22]:

qNxx
0

qx
þ

qN
xy
0

qy
¼ m0

q2u
qt2

(6.1)

qN
yy
0

qy
þ

qN
xy
0

qx
¼ m0

q2v
qt2

(6.2)

q2Mxx
1

qy
þ 2

q2M
xy
1

qxqy
þ

q2M
yy
1

qy2
þ qþ

q
qx

Nxx
0

qwc

qx

� �
þ

q
qy

N
yy
0

qwc

qy

� �
þ

q
qx

N
xy
0

qwc

qy

� �

þ
q
qy

N
xy
0

qwc

qx

� �
¼ m0

q2wc

qt2
�m2

q4wc

qx2qt2
þ

q4wc

qy2qt2

� �
(6.3)

m0 and m2 are mass moments of inertia and are defined as follows:

m0 ¼

Z h=2

�h=2
rdz; m2 ¼

Z h=2

�h=2
rh2 dz (7)

Here r denotes the density of the material. In CLPT, transverse shear stresses are neglected. Using Eq. (2), the
plane stress constitutive relation for a nonlocal plate is written as

snl
xx

snl
yy

snl
xy

8>><
>>:

9>>=
>>;� mr2

snl
xx

snl
yy

snl
xy

8>><
>>:

9>>=
>>; ¼

E=ð1� u2Þ uE=ð1� u2Þ 0

uE=ð1� u2Þ E=ð1� u2Þ 0

0 0 2G

2
64

3
75

�xx

�yy

�xy

8><
>:

9>=
>; (8)

E, G and n denote elastic modulus, shear modulus and Poisson’s ratio, respectively.Using strain
displacement relationship (Eq. (5)), stress–strain relationship (Eq. (8)) and stress resultants definition (Eq. (1)),
we can express stress resultants in terms of displacements as follows:

Mxx
1 � mr2Mxx

1 ¼ �D
q2wc

qx2
þ u

q2wc

qy2

� �
(9.1)



ARTICLE IN PRESS
S.C. Pradhan, J.K. Phadikar / Journal of Sound and Vibration 325 (2009) 206–223210
M
yy
1 � mr2M

yy
1 ¼ �D

q2wc

qy2
þ u

q2wc

qx2

� �
(9.2)

M
xy
1 � mr2M

xy
1 ¼ �Dð1� vÞ

q2wc

qxy
(9.3)

Here D ¼ Eh3=12ð1� u2Þ denotes the bending rigidity of the plate. Using Eqs. (6.3) and (9) we get the
following governing equations in terms of the displacements:

�Dr4wc þ mr2 �q�
q
qx

Nxx
0

qwc

qx

� �
�

q
qy

N
yy
0

qwc

qy

� �
�

q
qx

N
xy
0

qwc

qy

� �
�

q
qy

N
xy
0

qwc

qx

� �
þm0

q2wc

qt2

�

�m2
q4wc

qx2qt2
þ

q4wc

qy2qt2

� ��
þ qþ

q
qx

Nxx
0

qwc

qx

� �
þ

q
qy

N
yy
0

qwc

qy

� �
þ

q
qx

N
xy
0

qwc

qy

� �
þ

q
qy

N
xy
0

qwc

qx

� �

¼ m0
q2wc

qt2
�m2

q4wc

qx2qt2
þ

q4wc

qy2qt2

� �
(10)

It can be noted that governing equation for traditional local CLPT can be obtained by setting m ¼ 0 in
Eq. (10).
2.1.2. Double layered plate

Nanobeams or nanoplates are generally found in the form of multilayered structures where two or more
beam/plate layers are bonded by van der Walls (vdW) interaction. Modeling the vdW interaction is a key step
in the continuum modeling of nanobeams/nanoplates. For multi walled nanobeam, this modeling has been
discussed by various researchers [23–25]. Among these models most accepted one is the Winkler type
foundation model for vdW forces. Kitipornchai et al. [20] extended the model for vdW forces to study
vibration behavior of graphene sheets. They considered graphene sheets to be multilayered thin plates. In the
present work this idea has been extended to nonlocal elastic double layered plates. A typical double layered
plate is shown in Fig. 1b. Interaction between foundation parameter (the vdW force) and the nonlocal
parameter is investigated.

Assuming that the distributed load is directly applied to the plate corresponding to displacement wc
1 (upper

plate) the new distributed forces on these plates becomes

q1ðxÞ ¼ qðxÞ � Cðwc
1 � wc

2Þ

q2ðxÞ ¼ �Cðwc
2 � wc

1Þ (11)

Here superscript 1 and 2 in q correspond to plates with displacement wc
1 (upper plate) and wc

2 (lower plate),
respectively. C can be calculated for a graphene sheet using the following formula [20]:

Cgraphene ¼ �
4
ffiffiffi
3
p

9a

� �2
24_

|2
|

acc

� �8
3003p
256

X5
k¼0

ð�1Þ

2k þ 1

5

k

� �
|

acc

� �6
1

h12
p

�
35p
8

X2
k¼0

ð�1Þk

2k þ 1

2

k

� �
1

h6
p

( )
(12)

Here acc is the carbon–carbon bond length. hp is the height of individual plates. _ and | are parameters that are
chosen to fit the physical properties of the material.

Substituting q by q1ðxÞ and q2ðxÞ in Eq. (10) we get governing equations for double layered nanoplates

�Dr4wc
1 þ mr2 �qþ Cðwc

1 � wc
2Þ þ

q
qx

Nxx
0

qwc
1

qx

� �
þ

q
qy

N
yy
0

qwc
1

qy

� �
þ

q
qx

N
xy
0

qwc
1

qy

� ��

þ
q
qy

N
xy
0

qwc
1

qx

� �
þm0

q2wc
1

qt
�m2

q4wc
1

qx2qt2
þ

q4wc
1

qy2qt2

� ��
þ q� Cðwc

1 � wc
2Þ �

q
qx

Nxx
0

qwc
1

qx

� �

�
q
qy

N
yy
0

qwc
1

qy

� �
�

q
qx

N
xy
0

qwc
1

qy

� �
�

q
qy

N
xy
0

qwc
1

qx

� �
¼ m0

q2wc
1

qt2
�m2

q4wc
1

qx2qt2
þ

q4wc
1

qy2qt2

� �
(13.1)
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�Dr4wc
2 þ mr2 þCðwc

2 � wc
1Þ þ

q
qx

Nxx
0

qwc
2

qx

� �
þ

q
qy

N
yy
0

qwc
2

qy

� �
þ

q
qx

N
xy
0

qwc
2

qy

� ��

þ
q
qy

N
xy
0

qwc
2

qx

� �
þm0

q2wc
2

qt
�m2

q4wc
2

qx2qt2
þ

q4wc
2

qy2qt2

� ��
� Cðwc

2 � wc
1Þ �

q
qx

Nxx
0

qwc
2

qx

� �

�
q
qy

N
yy
0

qwc
2

qy

� �
�

q
qx

N
xy
0

qwc
2

qy

� �
�

q
qy

N
xy
0

qwc
2

qx

� �
¼ m0

q2wc
2

qt2
�m2

q4wc
2

qx2qt2
þ

q4wc
2

qy2qt2

� �
(13.2)

First and second equations correspond to displacements of upper ðwc
1Þ and lower ðwc

2Þ nanoplates,
respectively.

2.2. First-order shear deformation plate theory (FSDT)

2.2.1. Single layered plate

According to FSDT the displacement field for single layered plate can be written as [22]

ux ¼ uðx; y; tÞ þ zcxðx; y; tÞ; uy ¼ vðx; y; tÞ þ zcyðx; y; tÞ; uz ¼ wf ðx; y; tÞ (14)

Here u, v and wf denote displacement at the point (x, y, 0) along x, y and z directions, respectively. cx and cy

are the rotations of a transverse normal in the single layered plate with respect to x- and y-axis, respectively.
The strains are calculated as follows:

�xx ¼
qu

qx
þ z

qcx

qx
; �yy ¼

qy

qx
þ z

qcy

qy
; �zz ¼ 0; �yy ¼

1

2

qu

qy
þ z

qv

qx
þ z

qcx

qy
þ

qcy

qx

� �
,

�xx ¼
1

2

qw

qx
þ cx

� �
; �yz ¼

1

2

qw

qy
þ cy

� �
(15)

Using the principle of virtual displacements, following governing equations are obtained [22]

qNxx
0

qx
þ

qN
xy
0

qy
¼ m0

q2u
qt2

(16.1)

qN
yy
0

qy
þ

qN
xy
0

qx
¼ m0

q2v
qt2

(16.2)

qV xx
0

qx
þ

qV
yy
0

qy
þ qþ

q
qx

Nxx
0

qwf

qx

� �
þ

q
qy

N
yy
0

qwf

qy

� �
þ

q
qx

N
xy
0

qwf

qy

� �
þ

q
qy

N
xy
0

qwf

qx

� �� �

¼ m0
q2wf

qt2
(16.3)

qMxx
1

qy
þ

qM
xy
1

qx
� Vxx

0 ¼ m2
q2cx

qt2
(16.4)

qM
yy
1

qy
þ

qM
xy
1

qx
� V

yy
0 ¼ m2

q2cy

qt2
(16.5)

In FSDT, transverse shear stresses are taken into account. Using Eq. (2), the plane stress constitutive relation
of a nonlocal plate with FSDT are expressed as in Eq. (8) and

snl
yz

snl
xz

( )
� mr2

snl
yz

snl
xz

( )
¼

G 0

0 G

� �
�yz

�xz

( )
(17)
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Using strain displacement relationship (Eq. (15)), stress–strain relationship (Eqs. (8) and (17)) and stress
resultants definitions (Eq. (1)), one can express stress resultants in terms of displacements as follows:

Mxx
1 � mr2Mxx

1 ¼ D
qcx

qx
þ u

qcy

qy

� �
(18.1)

M
yy
1 � mr2M

yy
1 ¼ D

qcy

qy
þ u

qcx

qx

� �
(18.2)

M
xy
1 � mr2M

xy
1 ¼

1

2
Dð1� vÞ

qcx

qy
þ u

qcy

qx

� �
(18.3)

Vxx
0 � mr2V xx

0 ¼ k2Gh cx þ
qw

qx

� �
(18.4)

V
yy
0 � mr2V

yy
0 ¼ k2Gh cy þ

qw

qy

� �
(18.5)

In the above equations, k2 denote the shear correction factor. Using Eqs. (16) and (18) we get the following
governing equations in terms of displacements:

k2Gh
qcx

qx
þ

qcy

qy
þ

q2wf

qx2
þ

q2wf

qy2

� �
þ qþ

q
qx

Nxx
0

qwf

qx

� �
þ

q
qy

N
yy
0

qwf

qy

� ��

þ
q
qx

N
xy
0

qwf

qy

� �
þ

q
qy

N
xy
0

qwf

qx

� ��
� mr2 qþ

q
qx

Nxx
0

qwf

qx

� �
þ

q
qy

N
yy
0

qwf

qy

� ���

þ
q
qx

N
xy
0

qwf

qy

� �
þ

q
qy

N
xy
0

qwf

qx

� ��
¼ m0

q2w

qt2
� mr2 q

2w

qt2

� �
(19.1)

D
q2cx

qx2
þ

1

2
ð1� uÞ

q2cx

qy2
þ

1

2
ð1þ uÞ

q2cy

qxqy

" #
� k2Gh cx þ

qwf

qx

� �
¼ m2

q2cx

qt2
� mr2 q

2cx

qt2

� �
(19.2)

D
q2cy

qy2
þ

1

2
ð1� uÞ

q2cy

qx2
þ

1

2
ð1þ uÞ

q2cy

qxqy

" #
� k2Gh cy þ

qwf

qy

� �
¼ m2

q2cy

qt2
� mr2

q2cy

qt2

 !
(19.3)
2.2.2. Double layered plate

Making use of the same argument as in CLPT (Section 2.1.2) and substituting q by q1(x) and q2(x) in
Eq. (19) we get governing equations for double layered nanoplates

k2Gh
qc1x

qx
þ

qc1y

qy
þ

q2wf
1

qx2
þ

q2wf
1

qy2

 !
� Cðw

f
1 � w

f
2Þ þ

q
qx

Nxx
0

qw
f
1

qx

 !(

þ
q
qy

N
yy
0

qw
f
1

qy

 !
þ

q
qx

N
yy
0

qw
f
1

qy

 !
þ

q
qy

N
xy
0

qw
f
1

qx

 !)
� mr2 � Cðw

f
1 � w

f
2Þ

"

�
q
qx

Nxx
0

qw
f
1

qx

 !
þ

q
qy

N
yy
0

qw
f
1

qy

 !
þ

q
qx

N
xy
0

qw
f
1

qy

 !
þ

q
qy

N
xy
0

qw
f
1

qx

 !( )#

¼ m0
q2wf

1

qt
� mr2 q

2w
f
1

qt2

 !
(20.1)
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D
q2c1x

qx2
þ

1

2
ð1� uÞ

q2c1x

qy2
þ

1

2
ð1þ uÞ

q2c1y

qxqy

" #
� k2Gh c1x þ

qw
f
1

qx

 !

¼ m2
q2c1x

qt2
� mr2 q

2c1x

qt2

� �
(20.2)

D
q2c1y

qy2
þ

1

2
ð1� uÞ

q2c1y

qx2
þ

1

2
ð1þ uÞ

q2c1x

qxqy

" #
� k2Gh c1y þ

qw
f
1

qy

 !

¼ m2
q2c1y

qt2
� mr2 q

2c1y

qt2

 !
(20.3)

k2Gh
qc2x

qx
þ

qc2y

qy
þ

q2wf
2

qx2
þ

q2wf
2

qy2

 !
� Cðw

f
2 � w

f
1Þ þ

q
qx

Nxx
0

qw
f
2

qx

 !(

þ
q
qy

N
yy
0

qw
f
2

qy

 !
þ

q
qx

N
yy
0

qw
f
2

qy

 !
þ

q
qy

N
xy
0

qw
f
2

qx

 !)
� mr2 � Cðw

f
2 � w

f
1Þ

"

�
q
qx

Nxx
0

qw
f
2

qx

 !
þ

q
qy

N
yy
0

qw
f
2

qy

 !
þ

q
qx

N
xy
0

qw
f
2

qy

 !
þ

q
qy

N
xy
0

qw
f
2

qx

 !( )#

¼ m0
q2wf

2

qt
� mr2 q

2w
f
2

qt2

 !
(20.4)

D
q2c2x

qx2
þ

1

2
ð1� uÞ

q2c2x

qy2
þ

1

2
ð1þ uÞ

q2c2y

qxqy

" #
� k2Gh c2x þ

qw
f
2

qx

 !

¼ m2
q2c2x

qt2
� mr2 q

2c2x

qt2

� �
(20.5)

D
q2c2y

qy2
þ

1

2
ð1� uÞ

q2c2y

qx2
þ

1

2
ð1þ uÞ

q2c2x

qxqy

" #
� k2Gh c2y þ

qw
f
2

qy

 !

¼ m2
q2c2y

qt2
� mr2 q

2c2y

qt2

 !
(20.6)

In the above equations, w
f
1; c1x and c1y denote deflection, rotation of the normal with respect to x-axis and

rotation of the normal with respect to y-axis, respectively for the upper plate. Similarly, w
f
2; c2x and c2y

denote deflection, rotation of the normal with respect to x-axis and rotation of the normal with respect to
y-axis, respectively for the lower plate.
3. Solution using Navier’s approach

The developed governing differential equations of Section 2 have been solved by Navier’s approach for
simply supported boundary conditions. The simply supported boundary conditions for CLPT and FSDT are
written as
CLPT
 FSDT

At x ¼ 0 and x ¼ a
 At x ¼ 0 and x ¼ a
u ¼ 0, v ¼ 0
 u ¼ 0, v ¼ 0, cy ¼ 0

N0

xx
¼ 0, M1

xx
¼ 0
 N0

xx
¼ 0, M1

xx
¼ 0
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At y ¼ 0 and y ¼ b At y ¼ 0 and y ¼ b
u ¼ 0, v ¼ 0
 u ¼ 0, v ¼ 0, cx ¼ 0

N0

yy
¼ 0, M1

yy
¼ 0
 N0

yy
¼ 0, M1

yy
¼ 0
The following expressions of various generalized displacements have been assumed:

wc ¼
X1
m¼1

X1
n¼1

W c
mn sinðaxÞ sinðbyÞeio

c
mnt (21.1)

wf ¼
X1
m¼1

X1
n¼1

W f
mn sinðaxÞ sinðbyÞeio

f
mnt (21.2)

wc
1 ¼

X1
m¼1

X1
n¼1

W c
1mn sinðaxÞ sinðbyÞeio

ct (21.3)

wc
2 ¼

X1
m¼1

X1
n¼1

W c
2mn sinðaxÞ sinðbyÞeio

ct (21.4)

w
f
1 ¼

X1
m¼1

X1
n¼1

W
f
1mn sinðaxÞ sinðbyÞeio

f t (21.5)

w
f
2 ¼

X1
m¼1

X1
n¼1

W
f
2mn sinðaxÞ sinðbyÞeio

f t (21.6)

cx ¼
X1
m¼1

X1
n¼1

X mn cosðaxÞ sinðbyÞeio
f
mnt (21.7)

cy ¼
X1
m¼1

X1
n¼1

Y mn sinðaxÞ cosðbyÞeio
f
mnt (21.8)

c1x ¼
X1
m¼1

X1
n¼1

X1mn cosðaxÞ sinðbyÞeio
f t (21.9)

c2x ¼
X1
m¼1

X1
n¼1

X2mn cosðaxÞ sinðbyÞeio
f t (21.10)

c1y ¼
X1
m¼1

X1
n¼1

Y1mn sinðaxÞ cosðbyÞeio
f t (21.11)

c2y ¼
X1
m¼1

X1
n¼1

Y2mn sinðaxÞ cosðbyÞeio
f t (21.12)

In the above expressions, a ¼ mp=a and b ¼ np=b.

3.1. Classical plate theory (CLPT)

It is assumed that the plate is free from any in-plane or transverse loadings. So we have

Nxx
0 ¼ N

yy
0 ¼ N

xy
0 ¼ q ¼ 0
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Substituting Eq. (21.1) into Eq. (10) we get,

�Dða2 þ b2Þ2W c
mn ¼ �Mmnlmnoc

mn
2W c

mn (22)

Here lmn ¼ 1þ mða2 þ b2Þ. Using Eq. (22) following natural frequencies are obtained

oc
mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða2 þ b2Þ2

Mmnlmn

s
(23)

Here Mmn ¼ m0 þm2ða2 þ b2Þ. It can be seen from Eq. (23) that increase in nonlocal parameter would
decrease the natural vibration frequencies.

Substituting Eq. (21.3) and Eq. (21.4) into Eq. (13) we get

�Dða2 þ b2Þ2W c
1mn � ClmnðW

c
1mn �W c

2mnÞ ¼ �Mmnlmnoc2W c
1mn

�Dða2 þ b2Þ2W c
2mn � ClmnðW

c
2mn �W c

1mnÞ ¼ �Mmnlmnoc2W c
2mn (24)

Natural frequencies are obtained from following expression:

det
�Dða2 þ b2Þ2 � Clmn þMmnlmno2 Clmn

Clmn �Dða2 þ b2Þ2 � Clmn þMmnlmno2

" #
¼ 0 (25)

Solving for o we get

oc
mn1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða2 þ b2Þ2

Mmnlmn

s

oc
mn2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða2 þ b2Þ2 þ 2Clmn

Mmnlmn

s
(26)

It can be seen that one set of the frequencies are independent of vdW forces but other set of frequencies are
dependent on the vdW forces.
3.2. First-order shear deformation theory (FSDT)

Substituting Eqs. (21.2), (21.7) and (21.8) into Eq. (19) we get

f�ða2 þ b2Þk2Ghþ of 2
mnlmngW

f
mn � ak2GhX mn � bk2GhY mn ¼ 0

� ak2GhW f
mn � ½Dfa

2 þ 1
2
ð1� uÞb2g þ k2Gh� of 2

mnm2lmn�X mn �
Dab
2
ð1þ uÞY mn ¼ 0

� bk2GhW f
mn �

Dab
2
ð1þ uÞX mn � ½Dfb

2
þ 1

2
ð1� uÞa2g þ k2Gh� of 2

mnm2lmn�Y mn ¼ 0 (27)

One can rewrite Eq. (27) as

½S̄s� þ of 2
mnlmn½Ḡs�½D̄s� ¼ ½0 0 0�T (28)

½S̄s�, ½Ḡs� and ½D̄s� are defined in Appendix A.
Natural frequencies are obtained from Eq. (28)
Neglecting rotary inertia and solving Eq. (28) we get the following closed form solution for natural

vibration frequency of nonlocal plates.

of
mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1ðg4g6 � g25Þ � g2ðg2g6 � g3g5Þ þ g3ðg2g5 � g3g4Þ

m0lmnðg25 � g4g6Þ

s
(29)
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Substituting Eqs. (21.5), (21.6) and (21.9)–(21.12) into Eq. (19) we get

f�ða2 þ b2Þk2Ghþ of 2lmn � ClmngW
f
1mn � ak2GhX1mn � bk2GhY1mn þ ClmnW

f
2mn ¼ 0

� ak2GhW
f
1mn � ½Dfa

2 þ 1
2
ð1� uÞb2g þ k2Gh� of 2m2lmn�X1mn �

Dab
2
ð1þ uÞY1mn ¼ 0

� bk2GhW
f
1mn �

Dab
2
ð1þ uÞX1mn � ½Dfb

2
þ 1

2
ð1� uÞa2g þ k2Gh� of 2m2lmn�Y1mn ¼ 0

f�ða2 þ b2Þk2Ghþ of 2lmn � ClmngW
f
2mn � ak2GhX2mn � bk2GhY2mn þ ClmnW

f
1mn ¼ 0

� ak2GhW
f
2mn � ½Dfa

2 þ 1
2
ð1� uÞb2g þ k2Gh� of 2m2lmn�X2mn �

Dab
2
ð1þ uÞY2mn ¼ 0

� bk2GhW
f
2mn �

Dab
2
ð1þ uÞX1mn � ½Dfb

2
þ 1

2
ð1� uÞa2g þ k2Gh� of 2m2lmn�Y1mn ¼ 0 (30)

Eq. (30) is rewritten as

½S̄d � þ of 2
mnlmn½Ḡd �½D̄d � ¼ ½0 0 0 0 0 0�T (31)

½S̄d �; ½Ḡd � and ½D̄d � are defined in Appendix A. Neglecting rotary inertia and using Eq. (31) following
expressions for natural frequencies are obtained.

of
mn1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g01ðg4g6 � g25Þ � g2ðg2g6 � g3g5Þ þ g3ðg2g5 � g3g4Þ þ g4g6g7 � g7g25

m0lmnðg25 � g4g6Þ

s

of 2
mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g01ðg4g6 � g25Þ � g2ðg2g6 � g3g5Þ þ g3ðg2g5 � g3g4Þ � g4g6g7 þ g7g25

m0lmnðg25 � g4g6Þ

s
(32)

As observed in CLPT case (Section 3.1) here in FSDT case one finds that one set of frequencies is independent
of vdW forces. While other set is dependent on vdW forces.

4. Results and discussions

The governing equations for vibration of nonlocal plates are written in Eqs. (10) and (19). It can be seen that
putting m ¼ 0 in these equations traditional local elastic plate vibration equations are obtained. These
governing equations for local elasticity theory are same as expressed in Reddy [22]. Further using nonlocal
elasticity theory one could derive the governing equation Eq. (13) for vibration of multilayered plates. It can
be noted that by setting m ¼ 0, this equation can obtain the corresponding local elasticity equation. This
derived local elasticity equation matches with that of Kitipornchai’s et al. [20]. Further, putting D ¼ EI and
b ¼N in Eqs. (24) and (30) nonlocal solutions for free vibration of beam are obtained. These derived
equations do match with the nonlocal solutions for free vibration of beam (Reddy [16]). A beam with
following material properties and geometrical dimensions are considered: elastic modulus Eb ¼ 30GPa, length
Lb ¼ 10m, height hb ¼ varied, density rb ¼ 1 kg/m3. Natural frequencies are nondimensionalized as

ōb ¼ ob � L2
b

ffiffiffiffiffiffiffiffiffiffi
rbhb

EbIb

s

Nondimensional natural frequencies using Eqs. (24) and (30) are calculated for the above mentioned beam.
These results are listed in Table 1. From this table one could find that present results for the beam exactly
match with those reported by Reddy [16].

It can be seen from Eqs. (24) and (30) that for single layered nanoplates, the percentage difference in free
vibration frequencies calculated using local and nonlocal elasticity theory will depend on (i) size (length or
breadth) of the plate, (ii) mode of vibration and (iii) nonlocal parameter. This is true for both CLPT and
FSDT. In the present work the plate is considered to be a square plate. Frequency ratio is defined as the ratio
of the frequency obtained using nonlocal elasticity theory to frequency obtained using local elasticity theory
(m ¼ 0).
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Table 1

Nondimensional natural frequencies for EBT and TBT of beams.

L/h m Nondimensional

natural frequency from

EBT [16]

Nondimensional

natural frequency from

EBT (present)

Nondimensional

natural frequency from

TBT [16]

Nondimensional

natural frequency from

TBT (present)

100 0.0 9.8696 9.8696 9.8683 9.8683

0.5 9.6347 9.6347 9.6335 9.6335

1.0 9.4159 9.4159 9.4147 9.4147

1.5 9.2113 9.2113 9.2101 9.2101

2.0 9.0195 9.0195 9.0183 9.0183

20 0.0 9.8696 9.8696 9.8381 9.8381

0.5 9.6347 9.6347 9.6040 9.6040

1.0 9.4159 9.4159 9.3858 9.3858

1.5 9.2113 9.2113 9.1819 9.1819

2.0 9.0195 9.0195 8.9907 8.9907
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Fig. 2. Variation of natural frequencies ratio c with the length of a square nanoplate for various nonlocal parameter.
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For various nonlocal parameters and lengths of the plates the frequency ratios are plotted in Fig. 2. This
figure shows the profound scale effect for smaller size plate and higher values of nonlocal parameter. From
this figure it can also be observed that lower frequency ratio is obtained at higher values of nonlocal
parameter. Further it can be observed that as length increases, frequency ratio increases. This observation is
attributed to the fact that nonlocal effect is more profound in the case of small nano lengths. Frequency ratio
for various lengths of the plate and various modes of vibration are plotted in Fig. 3. The value of nonlocal
parameter (m) is assumed to be 2 nm2. It can be seen that the frequency ratios decrease with increase in
vibration modes. This reveals that nonlocal parameter is more prominent in higher vibration modes. From
Eqs. (27) and (33) it can be seen that, two sets of natural frequencies are obtained for double layered plates.
One set of frequencies are independent of vdW forces and are exactly same as those of single layered plate.
Further it can be observed that for double layered plate, frequency ratio associated with second set depends on
(i) size (length or breadth) of the plate, (ii) mode of vibration, (iii) nonlocal parameter, (iv) elastic modulus (E),
(v) Poisson’s ratio (n), (vi) height (h) and (vii) shear correction factor (k2). This dependency of frequency ratio
on these parameters is attributed to the fact that to illustrate this nonlocal effect on double layered plate,
a square shaped graphene sheet with following properties [19] is considered. FSDT has been employed in this
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Fig. 3. Variation of natural frequencies ratio with length of a square plate for various modes of vibration: (a) m ¼ n and (b) m! ¼ n.
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numerical example. The elastic modulus E ¼ 1.02TPa, length or breadth L ¼ 10 nm, thickness of each plate
h ¼ 0.34 nm, the Poisson’s ratio n ¼ 0.3, Winkler foundation modulus C ¼ 108GPa/nm are assumed. First
few modes of vibrations are considered and vibration frequency ratios have been plotted against percentage
change of each variable, one at a time. These numerical results are shown in Figs. 4 and 5. Present nonlocal
elasticity solutions show frequency ratio decreases with increase in height and Young’s modulus and increases
with length (or breadth) and Winkler modulus. This is more prominent for higher modes of vibrations (Fig. 5).
To explain these trends we rewrite local and nonlocal CLPT results for double layered plates (Eq. (2), second
equation) as follows:

o2
local ¼

Dða2 þ b2Þ2 þ 2C

Mmn

; o2
non-local ¼

1
lmn

Dða2 þ b2Þ2 þ 2C

Mmn

As lmn41 for ma0, increase in Dða2 þ b2Þ2 will cause increase in o2
non-local at a slower rate than for o2

local and
vice-versa. Thus from definition of D, a and b, increase in E and h will make the ratio ðonon-local=olocalÞ

decrease and increase in L will make this ratio increase. To explain the effect of C, consider the numerator of
o2

non-local which is less than the numerator of o2
local . This implies increase in C will make the ratio
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ðonon-local=olocalÞ increase and vice-versa. Similar procedure can be adopted to explain the trends using FSDT
results.

The percentage difference of frequencies in using CLPT and FSDT in single layered plate has been defined
as follows:

Percentage difference ¼
oc

mn � of
mn

of
mn

				
				� 100

While the percentage difference of frequencies in using CLPT and FSDT in double layered plate has been
defined as follows:

Percentage difference ¼
oc

mn2� of
mn2

of
mn2

				
				� 100

The percentage differences of the frequencies (employing CLPT and FSDT) for single layered and double
layered plates are plotted in Fig. 6(a) and (b), respectively. It is interesting to note that the difference is
significantly smaller for double layered plate than that for single layered plate. This is attributed to the fact
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that in the formulation of double layered plate three layers of materials are employed viz. top layer, Winkler
foundation and bottom layer. This takes into account the shear forces in the double layered plate. Thus in
double layered plates there is less difference between CLPT and FSDT results.
5. Conclusions

Equations of motion of Classical plate theory and first-order shear deformation theory of the plates are
derived based on Eringen’s differential constitutive equations of nonlocal elasticity. The equations of motion
are then analytically solved to obtain closed form solution for natural vibration of simply supported single
layered and double layered plates. Effect of (i) nonlocal parameter, (ii) length, (iii) height, (iv) elastic modulus
and (v) stiffness of Winkler foundation, of the plate on nondimensional vibration frequencies based on the
nonlocal elasticity theory are investigated. Nondimensional natural frequencies decrease with increase in mode
number. As the size of the plate decreases the effect of nonlocal theory becomes more significant and predicts
smaller nondimensional natural frequencies.
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Present nonlocal elasticity solutions show nondimensional natural frequencies ratio decrease with increase
in height and Young’s modulus of the nanoplate and increase with length (or breadth of the plate) and
Winkler modulus of the medium. This is more prominent for higher modes of vibrations. While insignificant
changes are observed for nonlocal parameter.

Effect of first-order shear deformation theory with the nonlocal elasticity on nondimensional natural
frequencies is found to be significant for thicker plates. Classical plate theory over predicts the natural
frequency. CLPT and FSDT are employed and the frequency predicted for single layered and double layered
plates. The difference in the frequencies predicted by CLPT and FSDT is significantly smaller for double
layered plate than that for single layered plate.
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Appendix A

½S̄s� ¼

g1 g2 g3
g2 g4 g5
g3 g5 g6

2
64

3
75

½Ḡs� ¼

m0 0 0

0 m2 0

0 0 m2

2
64

3
75

½D̄s� ¼

W mn

X mn

Y mn

2
64

3
75

½S̄d � ¼

g8 g2 g3 g7 0 0

g2 g4 g5 0 0 0

g3 g5 g6 0 0 0

g7 0 0 g8 g2 g3
0 0 0 g2 g4 g5
0 0 0 g3 g5 g6

2
6666666664

3
7777777775

½Ḡd � ¼

m0 0 0 0 0 0

0 m2 0 0 0 0

0 0 m2 0 0 0

0 0 0 m0 0 0

0 0 0 0 m2 0

0 0 0 0 0 m2

2
6666666664

3
7777777775

½D̄d � ¼

W 1

X1

Y1

W 2

X2

Y2

2
666666664

3
777777775

g1 ¼ �ða
2 þ b2Þk2Gh

g2 ¼ �ak
2Gh

g3 ¼ �bk
2Gh

g4 ¼ �Dfa2 þ 1
2
ð1� uÞb2g � k2Gh
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g5 ¼ �
Dab
2
ð1þ uÞ

g6 ¼ �Dfb2 þ 1
2
ð1� uÞa2g � k2Gh

g7 ¼ Clmn

g8 ¼ �ða
2 þ b2Þk2Gh� Clmn
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